• 阅读: 444 回复: 0
    关于数据分析与可视化

    用Python爬取了2900多款防脱洗发水数据并进行可视化分析,助你缓解脱发困扰

    楼主 发表于 2021-10-13 18:50:37

    就在前段时间,一项由卫健委发起的脱发人群调查数据显示:中国受脱发问题困扰的人群高达2.5亿。听到这儿,远在韩国的各家媒体又开始出来搞事情了, 

    根据他们的计算,这些人完全脱发时的总脱发面积大约可达5900平方公里,相当于首尔市面积(605平方公里)的十倍,那么今天小编就以一个数据分析师的身份来为这些人群出出主意,挑几款相对合适的防脱发洗发水给他们来使用

    1. 聊聊脱发困扰

    脱发其实分为很多种情况,如脂溢性脱发,表现为头屑增多、头皮痛痒、头发油脂分泌旺盛。还有营养性脱发,当饮食作息不规律时,脱发情况就会愈发地严重,以及物理性脱发,有时头发扎太紧、扯伤毛囊,都会造成脱发。

    不过大家也不用太过于担心,有研究表明,一个正常人每天脱落80-100根头发属于正常情况,但是如果超过100根就要提高警惕了,极大可能是头发的生长跟不上脱发的速度了。而有一款合适的洗发水,保持头皮的清洁卫生,对于防脱生发也有着极大的帮助,而对于不同头皮发质、不同年龄段的人来说,使用的洗发水也是不尽相同的。

    2. 数据采集

    数据采集是数据可视化分析的第一步,也是最基础的一步,本文主要是基于从电商平台上抓取一些防脱发类型的洗发水,采集过程如下

    2.1 页面分析与程序的编写

      

    该页面的总共60件商品由两个子页面构成的,每一个子页面分别包含30件商品,通过page参数来进行调节,那么我们请求的构造方式就变得相当简单了,

    通过这个请求,可以获取到的商品信息如下

    而针对评论方面的内容,则是以json数据形式存在,比较好解析,而且接口api非常明确,可以直接通过商品id这个参数即可进行请求的获取

    3.数据清洗

    数据采集后,接下来便对其进行数据清洗,去除重复值与脏数据,有助于提高可视化分析的准确性。

    导入商品数据

    4. 可视化分析

    以下我们将从商品的价格分布评论分布、商品产地分布、旗舰店所卖商品分布,商品功效等维度来进行数据的可视化分析

    商品价格分布

    可以看到大部分的商品价格都在250元以内,然后我们对商品的价格区间做一个统计分析 

    评论数分布

    大部分的商品评论数都是在5000+或者是2000+左右,或者是在200以及500左右的评论量,而评论数在50万以上以及100万以上的分别有22个17个,我们可以基本认定这些类的商品,它的购买量是最多的,我们

     

    本文内容转载自“关于数据分析与可视化”(ID:dylanxia2019),作者俊欣。

热门文章

数据可视化的意义与案例分享

「数据治理那点事」系列之三:不忘初心方得始终,数据质量治理?

「数据治理那点事」系列之一:那些年我们一起踩过的坑

「数据治理那点事」系列之二:手握数据「户口本」,数据治理肯定稳!

最新文章

我常用的两个可视化工具,Echarts和Tableau

是分是合,影响研发组织设计的主要因素

《深度剖析原型设计:认知、设计和规范最佳实践!》

详解数据可视化的4种类型:手把手教你正确选择图表

  • 未登录

    回复楼主

    登录后可回复
    /1000